Часть I
   На главнуюI. Теоретические основы II. Углеводороды III. Кислородсодержащие соединения IV. Азотсодержащие соединения V. Высокомолекулярные соединения VI. Решение задач
Часть I. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ
 Оглавление (Часть I)
Энергия активации
Для эффективного соударения молекул (частиц), приводящего к химической реакции, требуется определенная энергия.
Минимальное количество энергии, необходимое для прохождения реакции называют энергией активации.
Эта энергия требуется для достижения системой переходного состояния и образования активированного (переходного) комплекса, который превращается в продукты реакции уже самопроизвольно (примечаниеТермины "переходное состояние" и "переходный комплекс" часто используют как взаимозаменяемые, хотя переходное состояние – это уровень энергии на пути реакции, а переходный комплекс - группировка атомов, находящаяся в переходном состоянии.).

Изменение энергии реагирующей системы можно показать на примере элементарной реакции А + В АВ:

Энергия активации Еа равна разности энергий переходного (ЕПС) и исходного (Еисх) состояний:
Еа = ЕПС – Еисх.
Величина Еа служит важной характеристикой любой реакции. Она зависит от природы реагирующих веществ и наличия катализатора, влияющего на энергию переходного состояния, но не зависит от температуры.

Энергия активации определяет скорость реакции: чем меньше значение Еа, тем выше скорость реакции. Эта зависимость выражается уравнением Аррениуса, которое связывает константу скорости реакции Константа скорости реакции (k) – коэффициент пропорциональности, численно равный скорости реакции, когда произведение молярных концентраций реагентов равно 1. Константа скорости реакции зависит от температуры, от природы реагирующих веществ, но не зависит от их концентрации. с энергией активации и температурой. Уравнение Аррениуса более точно, чем правило Вант-ГоффаПравило Вант-Гоффа: "При повышении температуры на 10°С скорость реакции увеличивается в 2-4 раза".
Это правило является приближенным и применимо лишь для ориентировочной оценки влияния температуры на скорость реакций, протекающих при температурах, близких к комнатной (энергия активации таких реакций 50-150 кДж/моль).
отражает зависимость скорости (константы скорости) реакции от температуры.

  • В сложной реакции отдельные стадии отличаются скоростью и, соответственно, величиной Eа. Энергия, необходимая для прохождения всего процесса, определяется самой медленной – лимитирующей – стадией.
    Лимитирующая стадия – элементарная стадия сложной реакции, которая имеет наиболее высокую энергию активации и протекает намного медленнее остальных, ограничивая общую скорость процесса.
    Для примера рассмотрим изменение энергии в ходе двухстадийной реакции:
    В данном случае стадия 1 является лимитирующей, так как имеет более высокую энергию переходного состояния ПС1. Следовательно, для осуществления двухстадийной реакции в целом требуется энергия Еа, активирующая стадию 1.